Balancing cost and income in red deer management – a case study from Norway

Jon Olaf Olaussen, Trondheim Business School

Joint work with:
Anders Skonhoft, Norwegian University of Science and Technology (NTNU)
Vebjørn Veiberg (The Norwegian Institute for Nature Research, NINA)
Atle Mysterud (Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo)
Erling L. Meisingset (Bioforsk)
Recent large increases in deer population sizes both in Europe and North America

Ecological key stone species

- Vegetation and general ecosystem impact

Increased potential hunting benefits

Costs related to traffic incidents, damage to forestry, agriculture field damage
Norwegian red deer stock:
Two main reasons:

1. Selective harvesting
 - Harvest more bulls (stags), calves and yearlings, less females

2. Forestry practice
 - From selective logging to clear cutting
Motivation:

- Biological project to maximize meat production
- Economic considerations?
 - Stage structured harvesting
 - Overall red deer stock
Stage structured harvesting in general

- Calf harvesting:
 - Resistance among hunters

- Trophy hunting:
 - Trophy bulls very rare
Overall stock size in general:

- Grazing damage costs
- Traffic damage costs
 - material costs as well as road accident deaths
Map, study area: Flora and Gloppen
Landowner perspective:

- Case 1: Landowners maximising hunting value only: $V+B$

- Case 2: Landowners maximizing hunting value taking grazing damage costs into account: $V+B-D$
Ecological model

- five-stage model:
 - calves (X_c)
 - female yearling (X_{yf})
 - male yearlings (X_{ym})
 - adult females (X_f)
 - adult males (X_m)
Hunting

- Choosing harvest fractions (controls):
 1) h_c: Harvest rate calves
 2) h_{yf}: Harvest rate female yearlings
 3) h_{ym}: Harvest rate male yearlings
 4) h_f: Harvest rate females
 5) h_m: Harvest rate males
Ecological model

1) \[X_{c,t} = r_{yf}(X_{yf,t})X_{yf,t} + r_{f}(X_{f,t})X_{f,t} \]

2) \[X_{yf,t+1} = \psi s_c (1-h_{c,t})X_{c,t} \]

3) \[X_{ym,t+1} = (1-\psi)s_c (1-h_{c,t})X_{c,t} \]

4) \[X_{f,t+1} = s_{yf}(1-h_{yf,t})X_{yf,t} + s_{f}(1-h_{f,t})X_{f,t} \]

5) \[X_{m,t+1} = s_{ym}(1-h_{ym,t})X_{ym,t} + s_{m}(1-h_{m,t})X_{m,t} \]
Code of conduct restriction:

- Calves dependent on mother first winter:

\[h_c X_c \geq h_f X_f \]
Avoid extremely sex skewed sex ratio

- $h_{ym,t} \leq \bar{h}_{ym}$ and $h_{m,t} \leq \bar{h}_m$

- Or

$$\frac{X_{m,t}}{X_{f,t}} \geq \bar{x}$$
\[L = \sum_{t=0}^{\infty} \rho^t \left\{ \left[p_c h_{c,t} [r_{yf}(X_{yf,t})X_{yf,t} + r_f(X_{f,t})X_{f,t}] + [p_y h_{yf,t} + p_{ym} h_{ym,t}(1-\psi)/\psi)]X_{yf,t} + p_f h_{f,t} X_{f,t} + p_m h_{m,t} X_{m,t} \right] \\
+ \frac{z}{\theta}(h_{c,t} + h_{yf,t} + h_{ym,t} + h_{f,t} + h_{m,t}) - \rho \eta_{t+1} \left[X_{yf,t+1} - \psi s_c (1-h_{c,t}) [r_{yf}(X_{yf,t})X_{yf,t} + r_f(X_{f,t})X_{f,t}] \right] \\
- \rho \lambda_{t+1} \left[X_{f,t+1} - s_{yf} (1-h_{yf,t}) X_{yf,t} - s_f (1-h_{f,t}) X_{f,t} \right] - \rho \mu_{t+1} \left[X_{m,t+1} - s_{ym} (1-h_{ym,t})(1-\psi)/\psi] X_{yf,t} - s_m (1-h_{m,t}) X_{m,t} \right] \\
- \rho \omega_{t+1} \left[h_{f,t} X_{f,t} - h_{c,t} [r_{yf}(X_{yf,t})X_{yf,t} + r_f(X_{f,t})X_{f,t}] \right] - \rho \xi_{t+1} (h_{m,t} - \bar{h}_m) \right\} \]
Kuhn-Tucker conditions

\[
\frac{\partial L}{\partial h_{i,t}} \leq 0 ; \quad 0 \leq h_{i,t} < 1 \quad (i = c, yf, ym, f, m)
\]
What can be shown analytically?

- Not much...
- Possible to say something about the harvest pattern when the recreational value is zero (or negligible)
- Especially if we ignore the code of conduct harvest restrictions as well....
- Without female-calf restriction: No calf harvest
- With the restriction, it is always binding
- All adult males should be harvested
Baseline results, biological

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_c</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>h_{yf}</td>
<td>0.33</td>
<td>0.37</td>
</tr>
<tr>
<td>h_{ym}</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>h_f</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>h_m</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>H</td>
<td>752</td>
<td>682</td>
</tr>
<tr>
<td>X_c</td>
<td>1 176</td>
<td>1 021</td>
</tr>
<tr>
<td>X_{yf}</td>
<td>392</td>
<td>336</td>
</tr>
<tr>
<td>X_{ym}</td>
<td>392</td>
<td>336</td>
</tr>
<tr>
<td>X_f</td>
<td>1 720</td>
<td>1 137</td>
</tr>
<tr>
<td>X_m</td>
<td>264</td>
<td>227</td>
</tr>
<tr>
<td>X</td>
<td>3 944</td>
<td>3 057</td>
</tr>
</tbody>
</table>
Baseline results, economic

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat value (V)</td>
<td>3,016</td>
<td>2,700</td>
</tr>
<tr>
<td>Recreational value (B)</td>
<td>809</td>
<td>850</td>
</tr>
<tr>
<td>Hunting value (V+B)</td>
<td>3,825</td>
<td>3,550</td>
</tr>
<tr>
<td>Grazing cost (D)</td>
<td>2,099</td>
<td>1,594</td>
</tr>
<tr>
<td>Overall net benefit (R=V+B-D)</td>
<td>1,726</td>
<td>1,956</td>
</tr>
<tr>
<td>R/H</td>
<td>2.295</td>
<td>2.868</td>
</tr>
<tr>
<td>R/X</td>
<td>0.438</td>
<td>0.640</td>
</tr>
</tbody>
</table>
Optimal uniform harvest rate

- Case 1: \((h=0.18)\), net benefit=\(\text{NOK 693}\) (from \(1,726\))

- Case 2: \((h=0.19)\), net benefit=\(\text{NOK 752}\) (from \(1,956\)) in Case 2.
Sensitivity analysis

- Economic results sensitive to the male harvest constraint
- Harvest pattern generally very stable to different parameter changes, except…
- High recreational value: More calf than female harvest (restriction does not bind!)
Concluding remarks

- Stage structured harvest pays off
- Recreational value crucial
- Grazing damage important
- Current red deer stock is too high
- Current harvest pattern is wrong