Unilateral Climate Policies: Challenges, Designs, and Implications

Christoph Böhringer
University of Oldenburg und CERE Umeå
Climate Policy

• Hypothetical first-best global design:
 – Global cost-benefit analysis: How much?
 – Global cost-effectiveness analysis: 2°C target
 • Where?
 • When?
 • What?

• Practical second-best unilateral (sub-global) design:
 – Limitation of where-flexibility (CDM, JI)
 – International spillovers: leakage
Unilateral Action And Leakage

- Emission leakage:
 - Energy channel
 - Trade channel

- Second-best anti-leakage measures:
 - Border carbon adjustment (import tariffs and export rebates)
 - Output-based rebates/allocation
 - Differentiated domestic CO₂ pricing (including exemptions)
 - Intensity standards

Source: Sinn (2007)
Anti-Leakage Measures: Issues At Stake

- Leakage reduction?

- Attenuation of output losses for energy-intensive and trade-exposed industries?

- Global efficiency gains?

- Burden shifting?
Reality Check: Quantitative Impact Assessment

General Equilibrium (Theory)

GAMS (Modeling)

GTAP (Data)
Border Carbon Adjustments (BCA)

- Tariffs imposed on carbon embodied in imports
- Rebates to exports based on average carbon costs

Emissions embodied in non-OECD exports to OECD = 14.5% of all OECD emissions.

Source: Böhringer, Carbone, Rutherford (2011)
EMF 29: Scenario Design

• Unilateral abatement coalition:
 – EU + EFTA

• Reduction target:
 – 20% from business-as-usual (bau) coalition emissions

• Two strategies:
 – ref: uniform unilateral emissions pricing stand-alone
 – bca: ref complemented by border carbon adjustment for emission-intensive and trade-exposed industries (EITE)

Note:
 – Carbon tariff revenues accrue to importers
 – Carbon tariffs are levied on direct emissions and indirect emissions from electricity
 – Leakage adjustment of unilateral target to keep global emission reduction constant (bau emissions minus 20% of coalition’s bau emissions)
EMF 29: Key Results*

* Mean values \(\% : 100 \times \frac{(bca-ref)}{ref} \)

<table>
<thead>
<tr>
<th></th>
<th>ref</th>
<th>bca</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leakage rate (%)</td>
<td>23,9</td>
<td>17,1</td>
<td>-28</td>
</tr>
<tr>
<td>(\text{CO}_2) price (USD per ton of (\text{CO}_2))</td>
<td>65,2</td>
<td>56,7</td>
<td>-13</td>
</tr>
<tr>
<td>EITE output by coalition (% from (bau))</td>
<td>-3,85</td>
<td>-0,62</td>
<td>-84</td>
</tr>
<tr>
<td>EITE output by non-coalition (% from (bau))</td>
<td>1,21</td>
<td>-0,07</td>
<td>-106</td>
</tr>
<tr>
<td>Global consumption (% from (bau))</td>
<td>-0,31</td>
<td>-0,26</td>
<td>-16</td>
</tr>
<tr>
<td>Coalition consumption (% from (bau))</td>
<td>-0,78</td>
<td>-0,50</td>
<td>-36</td>
</tr>
<tr>
<td>Non-coalition consumption (% from (bau))</td>
<td>-0,09</td>
<td>-0,15</td>
<td>67</td>
</tr>
</tbody>
</table>

Source: Böhringer, Balistreri, Rutherford (2012)
EMF 29: Conclusions On BCA

- Leakage reduction? Yes.
- Attenuation of output losses for energy-intensive and trade-exposed (EITE) industries? Yes.
- Burden shifting? Substantial.
“If there’s more than one possible outcome of a job or task, and one of those outcomes will result in disaster or an undesirable consequence, then somebody will do it that way.”
EMF 29: Conclusions On BCA

• Leakage reduction? Yes.

• Attenuation of output losses for energy-intensive and trade-exposed (EITE) industries? Yes.

• Global efficiency gains? Modest.

• Burden shifting? Substantial.
Carbon Tariffs Revisited

Output changes of energy-intensive and trade-exposed industries (% from *bau*)

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>EU27</th>
<th>Japan</th>
<th>South Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EITE</td>
<td>REF</td>
<td>TRF</td>
<td>REF</td>
<td>TRF</td>
</tr>
<tr>
<td></td>
<td>-2.5</td>
<td>-2.4</td>
<td>-2.9</td>
<td>-2.1</td>
</tr>
<tr>
<td>crp</td>
<td>-2.2</td>
<td>-2.2</td>
<td>-2.3</td>
<td>-1.8</td>
</tr>
<tr>
<td>i_s</td>
<td>-2.4</td>
<td>-1.0</td>
<td>-4.3</td>
<td>0.6</td>
</tr>
<tr>
<td>nfm</td>
<td>-5.1</td>
<td>-3.9</td>
<td>-6.4</td>
<td>-0.8</td>
</tr>
<tr>
<td>nmm</td>
<td>-2.0</td>
<td>-1.4</td>
<td>-2.3</td>
<td>-0.6</td>
</tr>
<tr>
<td>oil</td>
<td>-5.9</td>
<td>-5.7</td>
<td>-7.1</td>
<td>-6.7</td>
</tr>
<tr>
<td>ppp</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.9</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Switzerland</th>
<th>Norway</th>
<th>Canada</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EITE</td>
<td>REF</td>
<td>TRF</td>
<td>REF</td>
<td>TRF</td>
</tr>
<tr>
<td></td>
<td>-2.6</td>
<td>-18.0</td>
<td>-6.2</td>
<td>-13.7</td>
</tr>
<tr>
<td>crp</td>
<td>-1.5</td>
<td>-18.3</td>
<td>-7.5</td>
<td>-9.0</td>
</tr>
<tr>
<td>i_s</td>
<td>-2.0</td>
<td>1.8</td>
<td>-17.9</td>
<td>-22.9</td>
</tr>
<tr>
<td>nfm</td>
<td>-0.7</td>
<td>-42.5</td>
<td>-0.8</td>
<td>-50.2</td>
</tr>
<tr>
<td>nmm</td>
<td>-4.1</td>
<td>-2.9</td>
<td>-4.0</td>
<td>-1.5</td>
</tr>
<tr>
<td>oil</td>
<td>-21.6</td>
<td>-22.0</td>
<td>-15.6</td>
<td>-16.8</td>
</tr>
<tr>
<td>ppp</td>
<td>-1.8</td>
<td>-1.2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

EITE – average of all emission-intensive and trade-exposed industries; **crp** – chemical products; **i_s** – iron and steel; **nfm** – non-ferrous metals; **nmm** – non-metallic minerals; **oil** – refined oil products; **ppp** – paper, pulp and print;

Source: Böhringer, Müller, Schneider (2014)
A Special Tribute to CERE-Ulvön

Output changes of energy-intensive and trade-exposed industries (% from \textit{bau})

<table>
<thead>
<tr>
<th></th>
<th>Sweden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REF</td>
<td>TRF</td>
</tr>
<tr>
<td>EITE</td>
<td>-6.3</td>
<td>-11.2</td>
</tr>
<tr>
<td>crp</td>
<td>-3.2</td>
<td>-8.4</td>
</tr>
<tr>
<td>i_s</td>
<td>-13.2</td>
<td>-22.4</td>
</tr>
<tr>
<td>nfm</td>
<td>-6.4</td>
<td>-24.4</td>
</tr>
<tr>
<td>nmm</td>
<td>-4.0</td>
<td>-2.3</td>
</tr>
<tr>
<td>oil</td>
<td>-13.8</td>
<td>-16.6</td>
</tr>
<tr>
<td>ppp</td>
<td>-2.4</td>
<td>-6.0</td>
</tr>
</tbody>
</table>

\textbf{EITE} – average of all emission-intensive and trade-exposed industries; \textbf{crp} – chemical products; \textbf{i_s} – iron and steel; \textbf{nfm} – non-ferrous metals; \textbf{nmm} – non-metallic minerals; \textbf{oil} – refined oil products; \textbf{ppp} – paper, pulp and print;
Key Drivers

• Composition of embodied carbon in EITE production
 – Direct combustion of (direct) fossil fuel inputs
 – Domestic embodied in domestically produced intermediate inputs
 – Imported embodied in imported intermediate inputs

• Export supply share of EITE output

Export-oriented industries producing with a large share of imported embodied emissions will suffer under carbon tariffs.
MRIO – CO$_2$ Content

EITE – average of all emission-intensive and trade-exposed industries; crp – chemical products; i_s – iron and steel; nfm – non-ferrous metals; nmm – non-metallic minerals; oil – refined oil products; ppp – paper, pulp and print;

Source: Böhringer, Müller, Schneider (2014)
MRIO – EITE supply

- **EITE** – average of all emission-intensive and trade-exposed industries;
- **crp** – chemical products;
- **i_s** – iron and steel;
- **nfm** – non-ferrous metals;
- **nmm** – non-metallic minerals;
- **oil** – refined oil products;
- **ppp** – paper, pulp and print;

Source: Böhringer, Müller, Schneider (2014)
Export Supply – “Indirect Imported” Carbon Content

Share of export supply (% of total supply)

Share of "Indirect Imported" carbon content (% of total carbon content)

EITE – average of all emission-intensive and trade-exposed industries; crp – chemical products; i_s – iron and steel; nfm – non-ferrous metals; nmm – non-metallic minerals; oil – refined oil products; ppp – paper, pulp and print;

Source: Böhringer, Müller, Schneider (2014)

The Devil Is Not Only In The Details!

\[S = \sqrt{n \sum_{i=1}^{\infty} evil} \]
EMF 29: Conclusions On BCA

• Leakage reduction? Yes.

• Attenuation of output losses for energy-intensive and trade-exposed (EITE) industries? Yes.

• Global efficiency gains? Modest.

• Burden shifting? Substantial.
Embodied Carbon Tariffs

• Two potential roles as environmental policy:
 – *Regulatory* – directly discourage pollution abroad
 – *Strategic* – stimulate adoption of pollution controls abroad

• Are carbon tariffs likely to stimulate pollution control abroad?
 – Do they benefit users?
 – Do they punish targets?
 – What is a target's best response?
• **Cooperate (C):** Non-coalition regions restrict domestic emissions by an amount equal (as a percentage of BaU emissions) to the reductions undertaken by the coalition. Non-coalition abatement takes place via a regional carbon tax (or regional tradable permit system) that is uniform across all of a given region's sectors.

• **Retaliate (R):** Non-coalition region raises a uniform import tariff on EITE goods from all coalition countries such that the added revenue generated by this tariff equals the revenue generated by the carbon tariffs imposed on them collectively. It continues to operate with unrestricted emissions.

• **Do Nothing (D-N):** non-coalition region operates with unrestricted emissions.

Source: Böhringer, Carbone, Rutherford (2015)
Numerical Framework And Key Results

• Numerical framework:
 – Regions:
 • Coalition: USA, Europe, Other Annex 1 without Russia
 • Non-Coalition: China, India, Russia, OPEC, Other Middle Income, Other Low Income
 – Enumerate all policy regimes \((2^6 + 3^6 = 793)\) and use CGE model based on GTAP data to generate payoffs of the policy game.
 – Solve for Nash equilibria

• Results:
 – Coalition countries benefit from using tariffs – mainly through shift in terms of trade.
 – China and Russia respond by adopting carbon regulations – to avoid tariffs and to improve world economy – while other non-coalition regions retaliate.
 – Cooperation from China and Russia reduces global efficiency cost of 10% reduction in world emissions by roughly half.
“There is only one way to be perfect but many ways to be imperfect”
(P. Krugman)
Other Choices – “Better Regulation”?

• Caveats against border adjustments:
 – Fears of disguised protectionism (substitute for strategic tariffs)
 – WTO obligations
 – Negotiations in WTO and UNFCCC already difficult

• Alternative instruments:
 – Output-based allocation of emission allowances
 – Industry exemptions (tax differentiation)
 – Intensity standards

• 2nd best benefits from instrument-specific distortions:
 – Border adjustments: trade distortions
 – Output-based allocation: production distortions (implicit output subsidy)
 – Industry exemptions: non-uniform emission pricing (implicit input subsidy)
CGE Analysis (1)

- **Reference scenario** (*ref*):
 - EU unilateral emission reduction (*x% from bau*)
 - Uniform emission pricing in the EU

- Leakage reduction and global cost savings: *(in % from reference scenario)*

<table>
<thead>
<tr>
<th>Target (% from ref)</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leakage reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border tax adjustment (bta)</td>
<td>33.6</td>
<td>37.2</td>
<td>39.8</td>
</tr>
<tr>
<td>Output-based allocation (oba)</td>
<td>10.4</td>
<td>10.9</td>
<td>11.5</td>
</tr>
<tr>
<td>Exemptions (exe)</td>
<td>9.2</td>
<td>8.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Global cost savings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border tax adjustment (bta)</td>
<td>11.1</td>
<td>13.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Output-based allocation (oba)</td>
<td>8.9</td>
<td>8.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Exemptions (exe)</td>
<td>6.4</td>
<td>2.0</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

Source: Böhringer, Carbone, Rutherford (2012)
CGE Analysis (2)

- Incidence and efficiency

<table>
<thead>
<tr>
<th>Burden sharing ratio (cost of EU/cost of non-EU)</th>
<th>Target (% from ref)</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference (ref)</td>
<td></td>
<td>2.4</td>
<td>3.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Border tax adjustment (bta)</td>
<td></td>
<td>1.1</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Output-based allocation (oba)</td>
<td></td>
<td>2.2</td>
<td>3.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Exemptions (exe)</td>
<td></td>
<td>2.3</td>
<td>3.2</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Target (20% from ref)

Social welfare metric

Source: Böhringer, Carbone, Rutherford (2012)
The Inconvenient Truth: There Is No “Magic Bullet”!

- Border tax adjustments reduce leakage and provide global cost savings but exacerbate regional inequality.

- Exemptions deliver rather modest little leakage reduction and run the risk of increasing climate policy cost.

- Output-based allocation is also no “magic bullet” but looks like a decent and practical approach.
Where Is The Beef?
The Message For Paris: Here Is The Beef!

• OECD – 20% emission reduction vis-à-vis BaU:
 – \textit{REF}: unilateral emission pricing
 – \textit{BTA}: REF plus border tariffs on EITE industries
 – \textit{GLB}: Global emissions trading (non-OECD with \textit{BaU} endowment)
Thank You For Your Attention!

