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Abstract

There are different views with respect to the treatment of tradable
permits for greenhouse gases in cost–benefit analysis. This note aims at
illustrating numerically within a simple general equilibrium model how to
treat tradable permits in economic evaluations of projects. The note looks
at a cost–benefit rule for a large project providing a public good inter-
preted as a shortcut for infrastructure, using a fossil fuel and a renewable
as inputs. The paper also evaluates a small or marginal project involv-
ing the same output and inputs. In addition, it illustrates the Samuelson
condition for the optimal provision of the public good. The note is a sup-
plement to CERE Working Paper No 2015:11 and SSE Working Paper
in Economics No 2015:3. The model used here may also be useful in ad-
vanced courses to illustrate general equilibrium cost–benefit analysis.
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1 Introduction

Tradable permits for greenhouse gases is an important tool in combating climate
change. In order to emit one ton of gases a polluter must acquire a permit. There
is a fixed number of permits, implying there is a cap on emissions. The question
arises how to handle tradable permits in cost–benefit analysis. According to
Johansson (2015), seven different major Manuals/Guides from North America,
Europe, Australia, and Asia offer at least five different answers. In Johansson
(2015) I discuss how to handle tradable permits in cost–benefit analysis, with
special reference to the EU Emissions Trading System (EU ETS). This supple-
ment aims at providing a simple numerical illustration of some basic results.
The focus here is on the more complicated large-project case, while Johansson
(2015) focuses on small or marginal projects; however, in Appendix B Johansson
(2015) offers a brief discussion of the non-marginal case. How to assess a project
using Hicksian expenditure functions is also discussed. In addition, this note
briefly considers the optimal provision of a public good. The model is easily
adapted so as to cover other evaluation scenarios than the one considered here.
Therefore, the model could be useful in advanced courses to illustrate general
equilibrium cost–benefit analysis.

2 A Simple General Equilibrium Model

There is just a single representative household, equipped with a simple utility
function U = ln(x)+ln(xN )+ln(z+1)−ln(G), where x and xN are commodities,
z is a public good (in the counterfactual z = 0), and G denotes emissions of
greenhouse gases. The indirect utility function, also the social welfare function
in this representative household economy, is stated as:

V (px, y, z,G) = 2 · ln(y)− ln(px)− 2 · ln(2) + ln(z + 1)− ln(G), (1)

where y is lump-sum income, and px is the price of x while pN = 1. The
household owns all firms and hence receive any profit income. There is also a
(positive or negative) lump-sum tax. This tax is the difference between the cost
of providing the public good (if z > 0) and the public sector’s revenue from
selling permits. Profits less the tax constitute y; refer to equation (5).

Assume there is an aggregate price-taking sector emitting greenhouse gases
(in what follows termed the Sector) that are covered by a cap-and-trade system.
It produces a commodity using a simple Cobb–Douglas technology:

xs = 50 · r1/3e1/3, (2)

where r is demand for a renewable input and e is demand for a fossil fuel covered
by a permit system (perhaps indirectly through the electricity demanded by
the sector and where the marginal plant uses a fossil fuel). As the sum of
the exponents is 2/3, i.e., smaller than 1, the production function is strictly
concave. Thus, the Sector has decreasing returns to scale so that its supply
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curve is upward-sloping. The Sector ’s profit is:

π = px · xs − pr · r − (pe + p) · e, (3)

where px is the output price, pr is the price of the renewable, pe is the energy
price, and p is the permit price; as in Johansson (2015), the permit price is
rescaled so that the cost of the permits can be added to the cost of the fossil
fuel. In order to simplify the example, px and pe are assumed to be determined
in world markets and hence are considered to be exogenous, with px = pe = 1.
Moreover, the renewable is assumed to be produced using a constant returns
to scale technology so that the supply is determined by aggregate demand.
Demand functions for the renewable and permits are:

r = k
(px)3

(pr)2 · (p+ pe)

e = k
(px)3

(p+ pe)2 · pr
, (4)

where k is a constant (equal to 125 · 103/27), e denotes emissions as well as
energy, and for the sake of clarity all price symbols are maintained but in what
follows px = pe = pr = 1. These constant price assumptions means no real loss
of generality in the present context.

The public good is produced using the fossil fuel and the renewable resource
as inputs. The public good is covered by the cap-and-trade system. The pro-
duction technology is taken to be Leontief: z = min{rz, ez}, where a superscript
z refers to the public sector. Therefore, income is defined as follows:

y = π(.) + T = π(.) + p · eq − (p+ pe) · ez − 1 · rz, (5)

where T R 0 is a lump-sum payment/tax, and eq is the given number of permits.
Thus, any difference between the revenue from permits and the cost of producing
the public good is handled in a lump-sum fashion. Note that the public sector
earns revenue only by selling permits to the private sector, i.e., net revenue
equals p · (eq − ez).

The model is general equilibrium, but in this note only the permit price
is flexible (but implicitly the exchange rate adjusts so as to clear the current
account although the considered projects are assumed to be so small relative to
the size of the economy that this impact can be ignored; refer to equation (8)).
This assumption is easily relaxed, but at the cost of increased computational
complexity.

3 A Large Project

In this section, I consider such a large increase in the provision of the public
good that it affects significantly the permit price. There are 50 permits available.
Initially these are demanded by the Sector because z0 = 0. Equilibrium in the
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permit market is reached when the permit price is such that e(.) = 50. This
occurs when p ≈ 8.6225. This is illustrated in Figure 1. Suppose now that
the public sector decides to provide 10 units of the public good. This requires
10 permits because the production technology is Leontief. An equilibrium in
the permit market occurs when the permit price is such that e(.) + 10 = 50,
i.e., when p ≈ 9.75829. At this price the Sector demands 40 permits. Thus,
emissions within the “bubble” remains constant, i.e., the considered project has
no impact on emissions. It is ignored here that the project may impact on
emissions elsewhere (e.g., through the harvest of the fossil fuel).

[Figure 1 about here.]

Taking the partial derivative of the Sector ’s profit function with respect to
the permit price yields the negative of the demand function for the fossil fuel;
alternatively, use equation (3) and the unconstrained Envelope Theorem, see
Johansson and Kriström (2015). Hence, Sector ’s loss of producer surplus can
be obtained as the negative of the area to the left of the demand curve for the
fossil fuel between initial and final prices of the composite commodity:

∆PS = −
∫ pc1

pc0

e(.)dpc = −
∫ 10.75829

9.6225

e(.)dpc ≈ −50.7937, (6)

where pc = pe+p, and a superscript 0 (1) refers to the initial (final) equilibrium.
In terms of Figure 2 it is the area to the left of the Sector ’s demand curve
between initial and final prices of the composite commodity, i.e., pc0ABpc1.
Alternatively, one could integrate with respect to the permit price and arrive
at the same result. There are also other ways of estimating the loss of producer
surplus. One way is to estimate the producer surplus as an area to the left of
the supply curve for x between the choke price, where supply is equal to zero,
and the output price px = 1 holding p at its final level, and deduct the area
(producer surplus) obtained when p is held at its initial level. Still another
variation is to simply calculate profits at the final permit price less profits at
the initial permit price.

[Figure 2 about here.]

The public sector’s revenue from permits decreases from 50 · 8.6225 to 40 ·
9.75829, i.e., by 40.7934. In addition the public sector pays 1 · 10 for the fuel
and 1 · 10 for the renewable input. Adding these three components to −∆PS
yields a total cost of producing the public good equal to about ∆CT = 111.587.
Another way of arriving at this result is to estimate the cost as an area under
an inverse demand function for the fossil fuel between initial and final demands:

∆C = −(

∫ e1

e0

(
125 · 103

27 · e

)1/2

de =

∫ 40

50

(
125 · 103

27 · e

)1/2

de) ≈ 101.587, (7)

where the second line of equation (4) with px = pr = 1 has been used to obtain
the inverse demand curve for the composite commodity (i.e., pe + p). ∆C in
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equation (7) corresponds to the shaded area in Figure 2, i.e., captures the loss of
the marginal product of the composite commodity evaluated along the optimal
path. This highlights what the cost of acquiring the fossil fuel reflects. Adding
the cost of the renewable input, i.e., 1 ·10, to ∆C yields the total cost (111.587)
of the considered increase in the provision of the public good. Using the initial
(final) price of the composite commodity times the number of permits used by
the public sector plus the cost of the renewable provides a quite good lower
(upper) bound for ∆CT or around 106.2 (117.6).

The reader may question that the derivation of ∆CT is general equilibrium
because one must account for induced price effects, in general. However, consider
the partial derivative of the indirect social welfare function (1) with respect to
px:

∂V (.)

∂px
= Vy(.)[xs(.)− x(.)], (8)

where Vy(.) = ∂V (.)/∂y is the marginal utility of income. If the price clears
the market, the derivative equals zero. Thus, in the more general case where
there are many markets and flexible market prices, there will be many terms
0 · dpi = 0, where i = 1, 2, . . ., that don’t show up in the final cost–benefit
rule. If more than a single price (here p) adjust more than marginally one has
to evaluate line integrals. This considerably complicates the analysis. Refer to
Johansson and Kriström (2015, Ch. 6) for details.

In order to calculate the willingness-to-pay (WTP) for the considered project,
one must use the social welfare function in equation (1) or a Hicksian expendi-
ture function. The WTP is implicitly defined by the following equation:

2 · ln(y1 − CV ) + ln(11) = 2 · ln(y0), (9)

where y0 = π0 + p0 · 50 ≈ 912.251 and y1 = π1 + p1 · 40 − pe · 10 − pr · 10 ≈
800.663 (and all firms (including the producer of the renewable input) except the
Sector make zero profits). It is easily verified that CV ≈ 525.609. Emissions of
greenhouse gases remain constant because there are a fixed number of permits:
In both the factual and the counterfactual case emissions are equal to 50 units.
Thus, CV represents the outcome of a cost–benefit analysis of an increase in
the provision of the public good from z = 0 to z = 10 using a fossil fuel (under
a cap-and-trade system) and a renewable as inputs.

The WTP for the public good is obtained as:

2 · ln(y0 − CV z) + ln(11) = 2 · ln(y0). (10)

CV z is equal to about 637.197. The difference between CV and CV z is equal
to the reduction in income (∆y ≈ −111.587), i.e., to the total cost of providing
10 additional units of the public good. Thus the cost–benefit rule can be stated
as follows:

∆V

V y

= CV = CV z + ∆y = CV z −∆CT (11)
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where V y is the marginal utility of income evaluated at an intermediate income
m ∈ [y1 − CV, y1]; V y = 2/m ≈ 2/491.926, and the marginal utility of income
is continuous on the closed interval [y1 − CV, y1]. Refer to equation (B.2) in
Johansson (2015) for further technical details.

4 Abatement Costs

Not much would be changed if there is an abatement technology. It simply
adds a competitor to permits and hence causes a reduction of the permit price.
However, emissions will remain unchanged, i.e., equal 50 units, as long as the cap
is binding. To illustrate, if the Sector controls ec units and its strictly convex
control cost function is quadratic, i.e., c(ec) = (ec)2/2, it is easily verified that
the profit function can be stated as:

π(.) = px · xs(.)− pr · r(.)− pe · e(.)− p · (e(.)− p)− p2/2
= px · xs(.)− pr · r(.)− (pe + p) · e(.) + p2/2, (12)

where I have used the fact that the Sector will abate until the permit price
equals the marginal abatement cost, i.e., p = ec, and then turn to purchasing
permits (implying that emissions as well as the number of permits demanded
are given by em = e(.) − ec). Similarly, the public sector may have access
to an abatement technology and hence demand fewer than 10 permits, say,
X < 10 permits. One would then arrive at a new equilibrium in the permit
market where the private sector demands 50−X permits and the public sector
demands X permits, i.e., in total demand equals the fixed supply. If X = 8, the
equilibrium permit price is 8.56828. The Sector will use 50.56828 units of the
fossil fuel, control 8.56828 units of emissions, and hence purchase 42 permits.
Thus, at the new equilibrium price demand for permits equals “supply”. Note
that ∂π(.)/∂p = −em(.) = −(e(.) − ec) = −(e(.) − p), rather than being equal
to −e(.) as in equation (6), a fact that must be accounted for in calculating the
loss of producer surplus.1

The only complication is that it seems difficult to come up with an inverted
em(.) function. However, one can use a variation of the Rule of Half, see de Rus
(2010) or Johansson and Kriström (2015), to value the change:

∆PS + ∆R ≈ (42− 50) · (8.56828 + 7.939) · 1

2
≈ −66.03, (13)

where ∆R denotes the change in the government’s revenue from permits. This
approach produces a very close approximation, the error is around 0.08 mon-
etary units. Add the cost of the fuel plus the cost of the renewable, i.e., 20,
plus the project’s abatement cost to arrive at a close approximation of the total
project cost. If the em(.) function is highly nonlinear one could decompose the

1In the initial situation p0 = 7.93897 = ec0, e(.) = 57.93897, and em0 = 50. Moreover,
∆PS = −28.869, and ∆CT = 28.869+50·7.93897−42·8.56828+1·10+1·10+ecz = 85.95+ecz ,
where ecz is the public sector’s abatement cost.
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change in the number of permits into line segments and apply the Rule of Half to
each trapezoid (British trapezium) and then sum the estimates. Alternatively,
use pre-project and with-project permit prices to obtain bounds for the cost
(63.5 and 68.5 plus 20 in both cases). Refer to Johansson (2015, Appendix A)
for further technical details on how to model abatement costs.

5 A Marginal Project

Let us now turn to a marginal project. Suppose that it is evaluated at z = 0.
Then the cost–benefit rule reads:

dV

Vy
=
Vz
Vy
dz − (pe + p)dez − prdrz

≈ 1/1

2/912.2511
dz − (1 + 8.6225)dez − 1drz. (14)

where Vz/Vy is the marginal willingness-to-pay per additional unit of the public
good. For technical details how to arrive at the cost–benefit rule in the first line,
refer to Johansson (2015). Note that pe +p is equal to the value of the marginal
product of the fossil fuel for the Sector evaluated at the initial optimum, i.e.,
px · 50 · (1/3) · r1/3 · 50−2/3 = 9.6225, where r = 481.125. This result neatly
illustrates the interpretation of the cost of using a fossil fuel under an emissions
trading system. If there is an abatement technology, one would have to add
the marginal abatement cost to the cost of undertaking the considered project;
abating emissions is costly but replaces permits that must be purchased in the
market. If the marginal abatement cost is 7.93897 = p0, add the upper bound
of the cost of controlling dezc units, and change the number of permits from
dez to dez − dezc (while the cost of acquiring the fuel continues to be 1 · dez).
If a control cost function for the considered activity is available, a more exact
estimate of the abatement cost is obtained (assuming that the public sector
abates such a quantity that the marginal control cost equals the permit price).
It is straightforward to verify that the price of the composite commodity still is
equal to the value of the marginal product of the fuel.

Next, suppose that the large project is evaluated as in (14), i.e., set dz =
dez = drz = 10 in equation (14). Then the CBA says that the societal surplus
is around 4 455. This is a huge overestimation, due to using the WTP for the
first unit of the public good to value all 10 units of the good. Suppose next that
the project is evaluated at final levels:

dV

Vy
=
Vz
Vy
dz − (pe + p)dez − prdrz

≈ 1/11

2/800.663
dz − (1 + 9.7582)dez − 1drz. (15)

Now, the social surplus is around 505.6. This is a slight underestimation of CV
in equation (9). These illustrations show that using ruling prices/values may
cause considerable overestimation of the social profitability of a large project.
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6 Introducing an Expenditure Function

One could obtain the results using an expenditure function. It is easily verified
that the Hicksian demand functions are:

xH(.) =
expV /2G1/2

(px · (1 + z))1/2

xHN (.) =
expV /2G1/2px

(px · (1 + z))1/2
, (16)

where a superscript H refers to a Hicksian or income-compensated demand
function, and V is the chosen reference level of utility. The expenditure function
is defined as:

E(.) = px · xH(.) + xN (.). (17)

Taking the partial derivative of the expenditure function with respect to z one
obtains:

∂E(.)

∂z
= − (px)1/2 · expV /2G1/2

(1 + z)3/2
(18)

Evaluating the WTP for a marginal increase in the provision of the public good
at z = 0 yields the same outcome as equation (14).2 Integrating (18) between
z = 0 and z = 10 yields the WTP for the considered large increase in the
provision of the public good, i.e., CV z in equation (10). Alternatively, simply
use the expenditure function to calculate the change in expenditure. To obtain
the net WTP (i.e., CV ), deduct the absolute value of the change in income, i.e.,
|∆y|, which reflects the total cost of the project.

7 The Samuelson Condition

An additional issue is to determine the optimal provision of the public good.
This is a quantity such that the marginal WTP for the good equals its marginal
cost:

Vz
Vy

=
y

2 · (1 + z)
= (1 + p) + 1. (19)

Recall that the assumed production technology is Leontief, i.e., the cost function
is g(pr, pe +p, z) = [(1+p)+1] ·z. Hence, the right-hand side expression in (19)
equals the marginal cost of providing z. The left-hand side expression as well as
the middle expression expresses the representative individual’s marginal WTP

2px = 1, and for any level of emissions of greenhouse gases G, but recalling that G affects
the reference level of utility, which here is taken to be the one corresponding to z = 0:

V = 2 · ln(912.2511) − 2 · ln(2) − ln(G) so that expV /2 = 456.126/G1/2.
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for the public good. In a society consisting of say, H > 1 identical individuals,
multiply the marginal WTP by H.

The reader my want to relate this approach to the one in Drèze and Stern
(1987), pedagogically presented in Florio (2014). Drawing on equation (2.17) in
Drèze and Stern (1987), one can formulate a Lagrangian function:

L = H · V (px, yh, z, G)− λe · (eq − e(.)− ez)− . . .− λz · (z − z), (20)

where all markets but the permit market and the market for the public good are
suppressed, there are H ≥ 1 identical individuals, yh is income of individual h
(h = 1, . . . ,H), λe and λz are Lagrange multipliers, z is per capita consumption
of the public good, and z is provision of the good. Taking the partial derivative
of equation (20) with respect to z and setting the resulting expression equal to
zero, one obtains:

H · Vz = H · 1

1 + z
= λz. (21)

In optimum, the aggregate marginal utility of the public good is equal to the
shadow price (in utility units) of the good. Repeating the procedure for the
provision of the public good, i.e., z, one obtains:

λz = Vy · [(1 + p) + 1] = Vy · gz, (22)

where gz is the marginal cost of providing the public good. Combining (21) and
(22) provides the necessary condition for the optimal provision of the public
good:

λz

Vy
= (1 + p) + 1 = gz = H · Vz

Vy
= H · y

2 · (1 + z)
. (23)

Thus, the good should be provided in such an amount that the shadow price of
z, converted to monetary units by division by the marginal utility of income3,
equals the marginal cost of providing the public good, where permits are val-
ued at the permit price. Equivalently, at the optimum, aggregate marginal
willingness-to-pay for the public good equals the marginal cost of providing the
good. Equation (19) provides the same answer (for H = 1). In both cases
emissions within the “bubble” remains constant, while it is assumed that the
project has no impact on emissions in the rest of the world. This rule resembles
the one provided in Samuelson’s (1954) classic paper.

Equations (19) and (23) reveal that there are three independent variables:
z, y, and p. Hence, to obtain the optimal general equilibrium z-level, one
must simultaneously solve for z, income y and the permit price p. Thus, three
equations are needed (to obtain necessary conditions for an interior solution)

3The marginal utility of income equals the Lagrange multiplier or shadow price λ associated
with the individual’s budget constraint, evaluated at the optimum.
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and here with H = 1:

k

(1 + p)2
= 50− z

y = 50 · ( k

(1 + p)
)1/3(

k

(1 + p)2
)1/3 − 1 · k

(1 + p)
− (p+ 1) · (50− z)

+ p · 50− (1 + p) · z − 1 · z
y

2 · (1 + z)
= (1 + p) + 1, (24)

where the fact that ez = er = z (due to the Leontief-assumption) is exploited.
The first equation determines the permit price, conditional on z. The second
equation yields income, conditional on p and z, and the third equation deter-
mines the optimal provision of the public good, conditional on p and y. The
optimal provision of z is around 22.2024, with y around 645.273 and p around
11.9053. Figure 3 provides an illustration of how the provision of the public
good affects welfare when the permit price and income are flexible but the num-
ber of permits is exogenous (and any impact on emissions in the rest of the
world is ignored). The curve has been obtained by solving the first two lines of
equation (24) for given z-levels and then using equation (1) to calculate social
welfare.

[Figure 3 about here.]

8 Conclusions

The purpose of this note has been to illustrate how to handle a cap-and-trade
system in evaluations of projects. The numerical illustration draws on a public
good, but what type of project one is evaluating has no bearing on how to cal-
culate the cost of using permits. The outcome of this exercise parallels the cost–
benefit rules derived in Johansson (2015). If the project is small or marginal,
value permits at their (forecast present value) market price. This price plus
the fuel price reflects the value of the marginal product displaced elsewhere in
the economy. If the project is large or non-marginal, the evaluation is slightly
more complicated, but a quite obvious generalization of the cost–benefit rule
obtained for a small or marginal project. Regardless of whether the project is
small or large, it has no impact on total or aggregate emissions of greenhouse
gases within the “bubble” (EU ETS, for example). Therefore, it would be a
mistake to value permits at the global marginal damage cost; the damage cost
of a zero increase in emissions is zero. Similarly, it would be a mistake to treat
permits as a transfer within the private sector.
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Figure 1: A segment of the Sector ’s demand curve for permits. The vertical
lines indicate at what prices the Sector demands 40 and 50 permits, respectively.
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Figure 2: The area under the inverse demand curve, denoted h(e, px . . .), be-
tween e0 (equal to the fixed number of permits eq) and e1 captures the public
sector’s cost of acquiring ez units of a fossil fuel.
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Figure 3: Social welfare V as a function of the provision of the public good z.
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