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Abstract

This study evaluates the tradeoff between agricultural production
and water quality for individual producers using an integrated economic-
biophysical hybrid genetic algorithm. We apply a multi-input, multi-
output profit maximization model to detailed farm-level production
data from the Oregon Willamette Valley to predict each producer’s
response to a targeted fertilizer tax policy. Their resulting produc-
tion decisions are included in a biophysical model of basin-level soil
and water quality. We use a hybrid genetic algorithm to integrate the
economic and biophysical models into one multiobjective optimization
problem, the joint maximization of farm profits and minimization of
Nitrate runoff resulting from fertilizer usage. We then measure the
tradeoffs between maximum profit and Nitrogen loading for individ-
ual farms, subject to the fertilizer tax policy. We find considerable
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variation in tradeoff values across the basin, which could be used to
better target incentives for reducing Nitrogen loading to agricultural
producers.

Keywords: Agri-Environmental Policy, Integrated Modeling, Tradeoff Anal-
ysis, Pollution Tax, Nitrogen Loading, Genetic Algorithm

JEL Codes: Q15, Q51, Q53, Q58

1 Introduction1

Environmental policy analysis, particularly the analysis of policies that are2

targeted to a distinct group of decision makers or to a particular geographic3

region, can be refined by integrating economic and biophysical models. Ex-4

amples of integrated economic and biophysical models for agriculture include5

modeling the biophysical outcomes of alternative economic scenarios (Secchi6

and Babcock, 2007; Jha et al., 2010) or the solution to a single-objective7

economic optimization model (Schönert et al., 2011; Uthes et al., 2010) and8

linking both single and multiobjective economic optimization models to bio-9

physical models in a model chain (Hillyer et al., 2003; Liu et al., 2002; Moore10

and Tindall, 2005; Rabotyagov et al., 2010c; Volk et al., 2008; Whittaker et11

al., 2005).12

In the model chain approach, information passes only in one direction,13

so that the optimal decision at any point in the chain is constrained by any14

previous decisions or outcomes in the chain. A simultaneous optimization of15

all objectives can inform the calculation of tradeoffs between multiple objec-16

tives. Several studies employ genetic algorithms to simultaneously optimize17

multiple objectives by allowing information to pass between each objective18
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in both directions (Bekele and Nicklow, 2005; Arabi et al., 2006; Rabotyagov19

et al, 2010a; 2010b). These studies illustrate the use of genetic algorithms to20

calculate the Pareto optimal frontier for both economic and environmental21

objectives.22

We build on the use of genetic algorithms for agri-environmental policy23

analysis by integrating a realistic biophysical model with a detailed economic24

optimization model that more fully endogenizes each producer’s response to25

the search for an optimal targeted policy. Our use of genetic algorithm26

methods to more freely integrate the economic and biophysical models is27

detailed in a related study of targeted policy design (Whittaker et al., 2014).28

This approach contributes to the existing literature in several important29

ways. First, we include both a detailed, spatially explicit biophysical model30

and a complete model of profit maximization, with minimal restrictions to31

solution values and without imposing a production technology relationship.32

Second, we apply an adaptive modeling framework to allow for two-way33

feedback between our economic and environmental objectives. This frame-34

work fully endogenizes fertilizer usage, making economic cost endogenous35

and better updating the search for the efficient tax rate. The resulting pol-36

icy generates a set of Pareto optimal tradeoffs that can be evaluated across37

objectives. Third, we evaluate the resulting tradeoffs for individual produc-38

ers, in addition to the aggregate basin-level tradeoffs.39

This integrated economic-biophysical model simulates a rich set of agent-40

level decisions, made in response to the Pareto optimal policy and corre-41

sponding environmental outcomes that can be used to evaluate tradeoffs42

at the individual level. We examine these decisions for a set of grass seed43
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farms situated in the Calapooia River watershed, a predominantly agricul-44

tural watershed in Oregon’s Willamette Valley. We also make use of detailed45

microlevel farm production data, which further enhances the evaluation of46

individual tradeoffs between farm profit maximization and watershed Nitro-47

gen loading.48

To value these tradeoffs, we jointly model the profit-maximizing crop pro-49

duction and Nitrogen loading levels, simulated by the economic-biophysical50

model, as outputs in a production process using the directional output dis-51

tance function (Chambers et al., 1996). In economic production theory, the52

directional output distance function is dual to the revenue function, which53

we exploit to derive shadow price estimates for Nitrogen loading in the basin54

(Ball et al., 2004; Färe et al., 2005; 2006).55

We find that the tradeoff between farm profit and Nitrogen loading varies56

greatly across farmers in the watershed, most likely due to differences in soil57

quality and location in the basin’s hydrologic network. In practice, man-58

agers could use this information to target incentives for fertilizer reduction59

or reduced nitrate runoff, such as easement payments or funding for best60

management practices, to farms that have a lower opportunity cost of re-61

ducing eventual Nitrogen loading in the basin. Randhir and Shriver (2009)62

demonstrate the potential gains from using multi-attribute shadow price val-63

ues to target restoration incentives across a watershed. Moreover, analysis64

of the tradeoff at the farm level offers a better picture of the distribution of65

costs across producers in the region. This distribution may be of concern66

for equity considerations and could affect the feasibility of implementing67

prospective agri-environmental policies in practice.68
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2 Multiobjective Optimization Problem69

We characterize the joint, and often competing, objectives of farm-level profit70

maximization and basin-level Nitrogen loading as a multiobjective optimiza-71

tion problem. These objectives are constrained by the farm production72

technology and by the biophysical processes that determine the fate and73

transport of Nitrogen through the basin. The solution includes an optimal74

fertilizer usage and ‘green tax’ rate targeted to the farm level.75

We use a hybrid genetic algorithm (HGA), following Whittaker et al.76

(2014), to solve over both objectives. We then use the solution values to77

estimate a frontier for crop production and Nitrogen loading that allows us78

to measure the economic and environmental tradeoffs for individual farms in79

the basin.80

Because the solution set of optimal tax rates and fertilizer usage depends81

on the profit maximizing behavior of individual producers, we formulate the82

multiobjective problem as a bilevel optimization (Bard, 1998). A bilevel83

optimization nests one optimization inside of another, so that the solution84

to the outer non-nested optimization, typically referred to as the upper level,85

depends on the solution to the inner nested optimization, typically referred86

to as the lower level (Sinha et al., 2013). In our case, the joint maximization87

of total profit and minimization of basin-level Nitrogen constitutes the upper88

level while producer level profit maximization makes up the lower level.89

For tax rate t and fertilizer input xN , we represent the nested nature of90

this problem in general form, following Sinha et al. (2013) as91
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max
t, xN

F(t, xN ) = [π(t, xN ), −N(xN )] (1)

s.t. xN ∈ argmax
xN


π(t, xN ) = py(xN )− wNxN − twNxN

π(t, xN ) ≥ 0

xN ≥ 0, t ≥ 0,

where N denotes basin-level Nitrogen loading, π represents farm profit, and92

wN is the market price for fertilizer.93

We note several important points underlying this general representation.94

First, the optimal tax rates and fertilizer usage for total profit and Nitrogen95

loading at the upper level depend on how individual producers respond to96

the tax, in terms of fertilizer use, at the lower level. The profit-maximizing97

fertilizer usage, in turn, depends on the production technology. Second, total98

Nitrogen loading at the upper level also depends on individual fertilizer usage99

in response to the tax at the lower level, as well as the spatial distribution100

of fertilizer usage by producers in the watershed. The spatial dynamics of101

fertilizer usage and Nitrogen loading are governed by biophysical processes102

in the basin. Third, the nested nature of this problem, coupled with multiple103

production inputs and many profit-maximizing producers, makes the solu-104

tion to (1) complex. We employ a hybrid genetic algorithm to iteratively105

optimize the lower and upper levels of our problem. We explain the pro-106

duction technology specification, biophysical model and genetic algorithm107

solution method in more detail below.108
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2.1 Profit maximization at the farm level109

In our economic model, each producer chooses inputs and outputs to maxi-110

mize profit subject to the production technology and the fertilizer tax rate111

policy. We use nonparametric linear programming methods known as data112

envelopment analysis (DEA) (Charnes et al., 1978) to estimate the produc-113

tion technology and to simulate the profit maximization decision of each114

farm. In the DEA representation of the production technology, each of the115

K producers uses inputs x = (x1, ..., xN ) to produce outputs y = (y1, ..., yM ).116

The production technology T is defined as T = {(x, y) : x can produce y}.117

The corresponding DEA representation of the technology is118

T = {(x, y) : ym ≤
K∑
k=1

zkykm, m = 1, ...,M, (2)

xn ≥
K∑
k=1

zkxkn, n = 1, ..., N,

K∑
k=1

zk ≤ 1,

zk ≥ 0},

where the variables zk, known as intensity variables in this framework, are119

constrained to allow for non-increasing returns to scale. Given input prices120

w = (w1, ..., wN ) and output prices p = (p1, ..., pM ), the profit of the kth121

farm is computed as the solution to122
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πk(p, w) = max
M∑

m=1

pmy
k
m −

N∑
n=1

wnx
k
n, (3)

s.t.
K∑
k=1

zkykm ≥ ym, m = 1, ...,M,

K∑
k=1

zkxkn ≤ xn, n = 1, ..., N

K∑
k=1

zk ≤ 1,

zk ≥ 0, k = 1, ...,K.

Figure 1 illustrates profit maximization for a DEA representation of a123

single input / single output production technology with three observations,124

a, b and c. These frontier observations also lie on the profit lines, π∗1, π∗2125

and π∗3, which represent maximum profit levels for input and output prices126

{(p1, w1), (p2, w2), (p3, w3)}.127

To simulate each producer’s response to a ‘green’ tax policy, we add

a targeted proportional tax to the profit maximization model in (3). The

objective function under the targeted tax, tk, on Nitrogen fertilizer, the N th

input, is

πk(p, w) = max
M∑

m=1

pmy
k
m −

N−1∑
n=1

wnx
k
n − tkwNx

k
N , (4)

subject to the technology representation in (2) and (3). Here the tax rate128

for each farm, tk, is multiplied by the quantity and price of the Nth input,129
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Figure 1: DEA Profit Maximization for Three Different Price Ratios

Nitrogen fertilizer. Note that a tax value of t = 1 is equivalent to having no130

tax on fertilizer and that a given policy consists of K different tax rates for131

each of the K farms.132

2.2 Nitrogen loading in the basin133

The environmental objective in this case is to minimize Nitrogen loading in134

the basin resulting from profit-maximizing fertilizer use. We use the Soil135

and Water Assessment Tool (SWAT) (Arnold et al., 1998) to specify the136

environmental objective. SWAT is a biophysical model that can be used to137

simulate the effects of agricultural production processes at the river basin138

scale (Arnold et al., 2012). The model divides the entire watershed into139

subbasins, where each subbasin is further divided into hydrological response140
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units (HRUs), which represent unique combinations of topography, land use141

and soil properties. Farm-level production decisions in each of the HRUs142

can then be included to model the spatial distribution of Nitrogen loadings143

throughout the watershed.144

We use the digital elevation model ArcSWAT, which adds a GIS interface145

to SWAT, to input and designate land use, soil, weather, groundwater, water146

use management, pond and stream water quality data. SWAT simulates147

hydrology, soil erosion, plant growth, as well as multiple fate and transport148

processes, including that of Nitrogen. This framework is specifically designed149

to simulate the environmental effects of agricultural production practices,150

thus providing a method to test the effectiveness of agri-environmental policy151

(Arnold et al., 2012). SWAT is widely used and numerous studies apply it152

specifically to agri-environmental policy analysis (Bekele and Nicklow, 2005;153

Richardson et al., 2008; Rabotyagov et al, 2010b)154

2.3 The Hybrid Genetic Algorithm155

We use a genetic algorithm to solve the multiobjective optimization problem156

for the case of a targeted environmental policy, in this case a proportional157

Nitrogen fertilizer tax. This problem is computationally intensive, but rela-158

tively easy to implement with parallel execution (Whittaker et al., 2009).159

A genetic algorithm (GA) is an iterative algorithm based on retention of160

the best or ‘fittest’ members of a population until a stopping condition is161

satisfied (Goldberg, 1989). In an optimization application, the GA consists of162

an initial randomly generated population that is evaluated for fitness using163

an objective function, a test for convergence, and application of the GA164
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operations of selection, crossover and mutation. These elements are followed165

iteratively until an optimum is obtained.166

Although GAs generally find promising solution regions quickly, conver-167

gence to an optimum can be much slower. In response, a hybrid genetic168

algorithm (HGA) model adds a local search method to speed convergence169

(Sinha and Goldberg, 2003). Figure 2 illustrates the HGA used to solve our170

maximum-profit and minimum-Nitrogen loading problem.171

We use the non-dominated sort genetic algorithm (NSGA-II) (Deb et172

al., 2002) to assign a fitness value to each individual in the GA population,173

based on the evaluation of the individual for each objective. The result is an174

estimate of the Pareto optimal set of our objectives, farm profit and Nitrogen175

loading, at convergence. In our case, a linear program for the DEA model is176

solved in the evaluation step, which limits the space that is searched by the177

GA. The DEA results are then passed to NSGA-II, which finds the set of178

values available across the Pareto optimal frontier. It is important to note179

that this HGA uses information from both the economic and environmental180

models used in the integrated simulation of the tax policy during the op-181

timization. Whittaker et al. (2014) provide more computational detail on182

implementing the HGA.183

3 Evaluating the Individual Tradeoffs184

The HGA is specified to maximize total basin-wide profit while also min-185

imizing total basin-wide Nitrogen loadings. However, individual tax rates186

are applied to each farm. Therefore, for this targeted tax policy, it is also187
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Figure 2: The hybrid genetic algorithm
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important to understand the tradeoffs that exist for individual producers.188

To evaluate the tradeoff between Nitrogen loading and crop production at189

the farm level, we first calculate each farm’s share of total basin Nitrogen190

loading as a function of their fertilizer application rate and HRU location.191

We then use a directional distance function approach to model individual Ni-192

trogen loading as an undesirable output, produced jointly with the desirable193

output, crop production.194

3.1 The underlying theory195

We let P (x) denote the feasible output set for the vector of farm outputs196

y = (y1, ..., yM ) and undesirable outputs u = (u1, ..., uJ) given inputs x =197

(x1, ..., xN ), so that198

P (x) = {(y, u) : x can produce (y, u)} . (5)

In this case, y represents each farm’s crop production output, u its Nitrogen199

loading and x the vector of inputs, including acreage, labor, equipment and200

fertilizer.201

We make the standard assumption that P (x) is compact and convex,202

acknowledging that output is scarce and thus, tradeoffs exist at the frontier.203

We also assume that good and bad outputs are weakly disposable, which204

allows for their proportional scaling up or down over P (x), meaning that for205

(y, u) ∈ P (x) and 0 ≤ θ ≤ 1, (θy, θu) ∈ P (x). We relax the usual assump-206

tion of null jointness, that if (y, u) ∈ P (x) andu = 0, then y = 0, due to207

its violation in practice by one of the farms in our study. Given these as-208
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sumptions, we use the directional output distance function to represent the209

feasible output set (Chambers et al., 1996), as well as individual measures of210

performance. Figure 4 illustrates the feasible output set for the joint produc-211

tion of good and bad output and the directional output distance function,212

defined as213

~DO(x, y, u; gy, gu) = max {β : [(y + βgy, u− βgu)] ∈ P (x)} , (6)

where (gy ∈ <M
+ , gu ∈ <J

+) is a directional vector that specifies the si-214

multaneous expansion of desirable output and contraction of undesirable215

output This model measures each observation’s distance, in a particular216

direction, to the production frontier. Thus, for observations on the fron-217

tier, ~DO(x, y, u; gy, gu) = 0, and for any observation below the frontier,218

~DO(x, y, u; gy, gu) > 0. Individual performance deteriorates with distance219

to the frontier, so that the directional output distance value can be inter-220

preted as a measure of inefficiency for each observation.221

The directional output distance function can be used to account for the222

undesirable nature of some outputs of a production process, in this case Ni-223

trogen loading, by specifying a negative direction for those outputs (Chung224

et al., 1997). This enables the simultaneous expansion of desirable output225

and contraction of undesirable output in the measurement of performance.226

The properties of the directional output distance function follow from the227

assumptions made to characterize P (x), and include Representation, Mono-228

tonicity and Translation. Chambers et al. (1996) prove these properties for229

the input oriented case and we outline their use for estimation purposes in230
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Figure 3: The Directional Output Distance Function for Desirable Output,
y, and Undesirable Output, u

the next section.231

We use this model to construct the feasible output set for crop production232

and Nitrogen loading, which allows us to measure the physical tradeoffs for233

individual producers in the watershed. Given the market value of grass234

seed, it is also possible to value these tradeoffs in monetary terms (Färe235

et al., 2001; 2005; 2006) by exploiting the duality that exists between the236

directional output distance function and the revenue function,237

R(x, p, q) = max
y, u
{py − pu : (y, u) ∈ P (x)} , (7)

where p = (p1, ..., pM ) ∈ <M
+ is the vector of output prices corresponding to238

y and q = (q1, ..., qJ) ∈ <J
+ is the vector of output prices corresponding to239

u. By definition,240
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R(x, p, q) ≥ py − qu,∀(y, u) ∈ P (x), (8)

and this, along with the definition of the directional output distance function241

from (6) and the representation property imply242

R(x, p, q) ≥ (p, q)(y + ~DO(x, y, u; gy, gu)gy, u− ~DO(x, y, u; gy, gu)gu)

≥ (py − qu) + ~DO(x, y, u; gy, gu)pgy + ~DO(x, y, u; gy, gu)qgu.

(9)

Rearranging terms in (9),243

~DO(x, y, u; gy, gu) ≤ R(x, p, q)− (py − qu)

(pgy + qgu)
. (10)

The directional output distance function can then be recovered from the244

right hand side in (10) as the solution to245

~DO(x, y, u; gy, gu) = min
p,q

R(x, p, q)− (py − qu)

(pgy + qgu)
. (11)

The vector of shadow prices is derived by applying the envelope theorem to246

(11), so that247

∇u
~DO(x, y, u; gy, gu) =

q

(pgy + qgu)
≥ 0, (12)

and248

∇y
~DO(x, y, u; gy, gy) =

−p
(pgy + qgu)

≤ 0. (13)
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For a single observation, the shadow price ratio is249

− qj
pm

=
∂ ~DO(x, y, u; gy, gu)/∂uj

∂ ~DO(x, y, u; gy, gu)/∂ym
,∀m ∈M and∀j ∈ J. (14)

The shadow price ratio values the tradeoff in relative terms between the250

desirable and undesirable output. If at least one of the outputs ym in P (x)251

is marketed, in this case crop production, the shadow price of the nonmar-252

keted undesirable output, in this case Nitrogen loading, can be recovered in253

absolute terms as254

qj = −pm
∂ ~DO(x, y, u; gy, gu)/∂uj

∂ ~DO(x, y, u; gy, gu)/∂ym
, ∀m ∈M and∀j ∈ J. (15)

We note that in this application, the desirable output, crop production,255

is measured in terms of total sales, so that a unit of output is $1.00. This256

normalizes the price of output, pm, to equal $1.00 as well.257

3.2 Estimating the tradeoffs in practice258

To compute the marginal effects and shadow prices of each output in prac-259

tice requires parameterization of the output frontier. In choosing a functional260

form for that parameterization, we are guided by the properties of the di-261

rectional output distance function. Only two forms are known to satisfy the262

translation property, and of these, only the quadratic form contains the first263

order parameters necessary to compute marginal effects (Färe and Lund-264

berg, 2006). More recently, Färe et al. (2010) use Monte Carlo simulations265

to demonstrate the ability in practice of the quadratic directional output266

distance function to characterize the output set. The quadratic (also as267
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in Aigner and Chu, 1968) directional output distance function (Färe et al.,268

2001; 2005; 2006) is estimated as269

~DO(x, y, u; gy, gu) =α0 +
N∑

n=1

αnxn +
M∑

m=1

βmym +
J∑

j=1

γjuj (16)

+
1

2

N∑
n=1

N∑
n′=1

αnn′xnxn′ +
1

2

M∑
m=1

M∑
m′=1

βmm′ymym′

+
1

2

J∑
j=1

J∑
j′=1

γjj′ujuj′ +

N∑
n=1

M∑
m=1

δnmxnym

+
N∑

n=1

J∑
j=1

νnjxnuj +
M∑

m=1

J∑
j=1

µmjymuj .

We estimate the quadratic directional output distance function as a con-270

strained linear programming problem, choosing the parameters to minimize271

each observation’s distance to the frontier. The solution to this problem, the272

optimal parameter values and ~DO
k
minimize273

K∑
k=1

~DO
k
(xk, yk, uk; gy, gu) (17)

subject to274

i. Representation275

~DO
k
(xk, yk, uk; gy, gu) ≥ 0, k = 1, ...,K,
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ii. Monotonicity276

∂ ~DO
k
(xk, yk, uk; gy, gu)

∂ykm
≤ 0,m = 1, ...,M, k = 1, ...,K,

277

∂ ~DO
k
(xk, yk, uk; gy, gu)

∂ukj
≥ 0, j = 1, ..., J, k = 1, ...,K,

278

∂ ~DO
k
(xk, yk, uk; gy, gu)

∂xkn
≥ 0, n = 1, ..., N, k = 1, ...,K,

iii. Translation279

~DO(x, y + αgy; gy) = ~DO(x, y; gy)− α

The constraints ensure that the quadratic form satisfies the properties280

of the directional output distance function. The first constraint satisfies the281

representation property by requiring all observations to either lie on or be-282

low the output frontier. The second constraint states that an increase in283

any desirable output, a decrease in any undesirable output, or a decrease in284

any input can only reduce an observation’s distance to the output frontier,285

which guarantees monotonicity for both inputs and outputs. The third con-286

straint imposes the translation property, restricting the parameters so that287

additional output in the gym direction reduces an observation’s distance to288

the frontier by an equal amount. A reduction of undesirable output in the289

guj direction decreases an observation’s distance to the frontier by an equal290

amount. The final constraint adds the symmetry condition for cross-input291

and cross-output effects.292
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4 Empirical Application293

We use the HGA to maximize profit and minimize Nitrogen loading for a set294

of 87 real grass seed farms in the Calapooia river watershed, a tributary of295

the Willamette river basin west of the Cascades Mountain range in Oregon.296

These farms are situated in the lower portion of the watershed, which has a297

drainage area of 682 km2. The environmental effects of agricultural land use298

in the Lower Calapooia have been previously studied as part of the USDA299

Conservation Effects Assessment Project (CEAP) (Confessor and Whittaker,300

2007; Mueller-Warrant et al., 2012). The vast majority of the watershed is301

used for agricultural crop production (83 %) with most of this in grass seed302

farming. This is followed by hay/ pasture/ range areas (12 %). Wetlands,303

water bodies and urban areas comprise the remaining area. A recent National304

Water Quality Assessment of the watershed identifies nitrate Nitrogen as a305

particular concern, due to the increasing trend of stream and groundwater306

concentrations in excess of human health and aquatic life standards (Mueller-307

Warrant et al., 2012; Dubrovsky et al., 2010). Recent sampling confirms that308

these Nitrogen concentrations vary greatly across the basin, even for areas309

with over 90% of land in agriculture (Mueller-Warrant et al., 2012), making310

this a particularly interesting case to consider for policy targeting.311

4.1 The SWAT application312

We use the SWAT model to divide the study area into 381 subbasins and313

533 HRUs. We calibrated the SWAT model with daily streamflow data314

at the basin outlet Albany, OR, obtained from the U.S. Geological Survey315
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Figure source: Confessor and Whittaker (2007)

Figure 4: The SWAT delineation of the Lower Calapooia watershed

(USGS) National Water Information System (NWIS) website. We used soil316

data from the SSURGO state soil geographic database for Oregon, obtained317

from the U.S. Department of Agriculture (USDA) Natural Resources Con-318

servation Service (NRCS), land use data from the USGS National Water319

Quality Assessment (NAWQA) program, and climate data from the Oregon320

Climatic Service (OCS). We calibrated the model using the automatic cali-321

bration method described in Confessor and Whittaker (2007) and Whittaker322

et al. (2010). Figure 4 depicts the Calapooia watershed stream system.323
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4.2 The Pareto optimal tax policy324

Due to USDA confidentiality restrictions, agricultural policy studies com-325

monly model the decisions of a representative farm, and are applied to ag-326

gregated production data. The USDA National Agricultural Statistics Ser-327

vice (NASS) granted us access to detailed farm-level records from the 2002328

Census of Agriculture with the confidentiality restriction that the data could329

only be accessed from NASS computers.330

The HGA requires parallel computation, and could not be run using331

available NASS computing capability. To maintain the confidentiality of332

individual producers, we constructed a synthetic data set from the original333

records for application of the economic model. Fully synthetic data sets334

are constructed by multiple imputation (Rubin, 1993) of all observations335

for all variables in the data set, and are generally considered protection336

against disclosure of confidential data. Bayesian networks provide a useful337

method for imputation and creation of synthetic data sets, particularly in338

high dimensions (Thibaudeau and Winkler, 2002; Di Zio et al., 2004).339

The estimated Bayesian network satisfies the confidentiality restrictions340

and can be copied to non-secured computers. We construct the synthetic341

microdata for use in the DEA profit maximization model using constrained342

draws from the Bayesian network. Our constructed synthetic microdata has343

the same statistical properties as the original census records and protects344

the confidentiality of the individual producers. The synthetic data were345

also shown to generate the same results for the DEA profit maximization346

model, which can be run in isolation using NASS computers, as the original347
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Table 1: Descriptive Statistics for the Calapooia Synthetic Microdata
87 Obs.* Mean Min Max Std. Dev

Crop Sales ($) 731,800.63 7,744.39 3,404,889.01 591,995.20
Acres 1,715.48 27.54 6,972.44 1,370.35
Labor 112,772.43 241.37 484,628.39 101,673.74

Fertilizer 92,911.99 6,524.38 342,890.26 72,011.17
Seed 16,903.00 4.58 104,308.10 21,278.89

Chemicals 60,243.97 27.21 565,094.90 90,974.07
Fuel 25,720.85 283.84 169,372.22 27,747.60

Utilities 13,392.67 0.00 82,088.85 14,950.13
Maintenance 43,410.06 21.20 159,912.51 37,177.90

Other Expenses 204,159.40 8,411.60 716,892.97 154,316.76
*Note, all input data with the exception of acreage is listed in expenditure form.

census records. Table 1 provides descriptive statistics for the input and348

output data listed in expenditure and revenue form, with the exception of349

acreage. According to NASS records, Nitrogen fertilizer sold for $191/ton in350

2002, which implies that farms in our sample applied roughly 486.5 tons of351

fertilizer on average.352

For the targeted tax policy HGA, we set up a population of 200 indi-353

viduals (the number of cluster nodes). Each individual genome consists of354

87 targeted tax rates, one for each farm in the watershed. The tax rate355

values range from 1 to 10, so that the optimal tax payments could range356

from 0 to up to 9 times the total fertilizer expenditure for a given farm. The357

HGA runs and tests the fitness of different individuals for their ability to358

simultaneously optimize both environmental and economic objectives. After359

several thousand generations, only the fittest solutions are retained and the360

resulting solutions approximate the Pareto optimal frontier.361

Figure 5 depicts the Pareto optimal frontier for Nitrogen Loading and362
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Figure 5: The Pareto optimal frontier for the targeted tax policy

Profit at the basin level, summing over all 87 farms for the 200 individual363

candidate solutions to the targeted tax policy HGA.364

4.3 Tradeoff results365

The targeted tax policy HGA generates the Pareto optimal tax rate and366

corresponding profit-maximizing production decisions and Nitrogen loading367

for each of the 87 farms in each of the 200 individual cluster nodes in the368

parallel computation. This yields a data set of 17,400 simulated observations.369

For this second stage of analysis, where the profit-maximizing input and370

output quantities have already been chosen, we also combine some of the371

inputs to reduce the number of parameters that must be estimated.372

For computational purposes, we convert each observation’s input and373

output level to a mean-weighted amount. Weighting each input and output374

by its respective sample mean insures independence of unit of measurement375

(Shephard, 1970) and corrects for differences in scale.376
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Table 2: Calapooia Simulated Microdata and Distance Results
17,400 Obs. Mean Min Max Std. Dev

Acres 1,715.47 27.54 6,972.40 1,362.48
Labor Expenditures 112,772.43 241.37 484,628.39 101,090.62
Other Expenditures 363,829.96 19,981.10 977,014.99 232,010.46
Fertilizer (tons) 253.83 0 8,928.30 374.89

Crop Sales 734,068.28 0.47 2,834,500 573,605.17
Nitrogen Loading (lbs) 128,978.06 0 3,462,393.05 162,294.89

Distance 0.62 0.00 5.20 0.38
Tax rate 2.03 1 10 1.90
q elasticity 0.98 0.00 3.01 0.42
q price 5.58 0.00 17.11 2.39

Thus, the distance value for a hypothetical observation at the mean can377

be interpreted as the percent increase in desirable output ykm and decrease378

in undesirable output ukj required to reach the corresponding point (yk∗m ,379

uk∗j ) on the output frontier. The marginal effects of each output can then380

be interpreted as percent changes in inefficiency, so that the shadow price381

ratio provides a measure of the elasticity of the tradeoff between crop sales382

and Nitrogen loading for each producer. The simulated microdata, Pareto383

optimal tax rates, directional output distance function results and Nitrogen384

loading shadow price ratios are summarized in Table 2.385

The average Pareto optimal tax rate from the HGA is 2.03, or 2.03 times386

the price of fertilizer. The market price of fertilizer in this study is $191387

per ton, making the average Pareto optimal fertilizer cost equal to roughly388

$380 per ton. Profit-maximizing fertilizer application decreases substantially,389

falling from an average of 486.6 tons per farm to an average of 253.8 tons390

per farm under the tax policy. While crop sales decrease for more than half391

of the farms in our sample under the tax policy, average crop sales increase392

25



slightly, from roughly $732,000 to $734,000 per farm. This is due to a shift393

in optimal production intensities under the tax policy and our estimate of394

the production technology for the basin.395

The distance value of 0.62 suggests that on average, producers in the396

basin could increase their crop sales and decrease their Nitrogen loading by397

62 percent from mean levels, based on the production levels of other farms398

in the basin. For a hypothetical observation at the mean, this corresponds399

to a feasible reduction of roughly 80,000 lbs. of Nitrogen loading and an400

increase of roughly $450,000 in crop sales. We caution that differences in401

location within the basin stream system, as well as unobserved differences in402

soil quality may be driving these relatively high estimated inefficiencies.403

Along the frontier, the tradeoff between crop sales and Nitrogen loading,404

measured in elasticity form, is close to one on average. This implies that405

on average, a one percent reduction in Nitrogen loading (from mean levels)406

corresponds to a one percent reduction in crop sales (from mean levels). To407

convert this value to monetary terms,408

q = −p∂
~DO(x, y, u); gy, gu)/∂u

∂ ~DO(x, y, u); gy, gu)/∂y

ȳ

ū
. (18)

The desirable output, grass seed sales, is measured in dollars, so that the409

price for an additional dollar of grass seed sales, p, is normalized to equal410

$1.00. Thus, the average estimate for the shadow price of Nitrogen loading,411

q, in monetary terms is $ 5.58 per lb., and q ranges from 0.00 to $17.11 per412

lb. across individual producers. These values should be interpreted with413

caution, particularly given that they are derived from simulated outcomes.414
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Figure 6: Distribution of Nitrogen Loading Shadow Price Elasticities

They do however shed some light on the possible range of values for Nitrogen415

loading in the basin, as well as how these values vary across the farms.416

Figure 6 illustrates the distribution of estimated tradeoff elasticities.417

Elasticity values lie between 0.5 and 1.5 for the majority of observations418

in our sample. For relatively inelastic observations, a one percent reduction419

in Nitrogen loading corresponds to more than a one percent reduction in crop420

sales. The opportunity cost of reductions to Nitrogen loading is greatest for421

these farms under the tax policy. Several factors could explain a more in-422

elastic tradeoff. These farms may be situated on more productive land in the423

basin, on land where applied fertilizer is less apt to run off due to gradient424

conditions, or they may also be located at a point in the stream network425

where runoff has less of an effect on basin-level Nitrogen loading.426

All of these are important to consider from a policy perspective. For427
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instance, it may be desirable to target incentives for additional best man-428

agement practices, such as buffer strips, to these farms given that their re-429

ductions in Nitrogen loading that rely on decreased fertilizer usage alone are430

so costly. At the other end of the distribution, for farms where the tradeoff431

is relatively elastic, a one percent reduction in Nitrogen loading corresponds432

to much less than a one percent reduction in sales. These farms may be sit-433

uated on less productive land, on land where applied fertilizer is more likely434

to run off, or at a point in the stream network where runoff has more of an435

effect on Nitrogen loading in the basin. From a policy perspective, it may be436

desirable to target additional incentives for land retirement to these farms.437

5 Conclusion438

The tradeoff between agricultural production and water quality is widely ac-439

knowledged. The effectiveness of any policy incentive to address this prob-440

lem depends not only on how farmers respond, but also on the physical441

relationship between their production activities and the surrounding water-442

shed. Recent computational advances allow for simultaneous consideration443

of both questions, enabling more complete policy analysis. In this study, we444

take just such an integrated approach by developing a hybrid genetic algo-445

rithm to solve for an optimal tax policy that jointly maximizes agricultural446

profit and minimizes basin-level Nitrogen loading. Our framework advances447

the integrated economic and biophysical literature by incorporating realistic448

models of both farm production and the basin hydrology, by more freely449

optimizing over both objectives, and by fully endogenizing economic cost450
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without imposing an a priori production technology.451

We then use our framework to better understand the tradeoffs that result452

at the farm level under the prospective tax policy. Working with a set of grass453

seed farms from Oregon’s Calapooia River watershed, we estimate an aver-454

age shadow price of $5.58/lb. for Nitrogen loading, providing information455

on the cost to farmers of decreasing current loadings in the basin. We also456

find that this tradeoff varies across farms, from relatively elastic for some457

to relatively inelastic for others. The distribution of tradeoff values likely458

depends on several factors, including differences in soil productivity, topog-459

raphy, and location in the basin’s hydrological network. This suggests the460

need for more adaptive management policies in conjunction with the fertil-461

izer tax, such as incentives for the use of best management practices on more462

productive working land and taking some marginal, or critically-located land463

out of production altogether. The distribution of tradeoff values would also464

likely affect the feasibility of implementing these policies in practice. For in-465

stance, a policy that concentrates Nitrogen reduction costs among producers466

in one are of the basin may be less feasible than one that would spread costs467

more evenly across the watershed. Individual tradeoff values could be used468

to assess the distributional implications of prospective agri-environmental469

policies.470

It is important to also note the limitations of this study. Perhaps most471

importantly, we focus on a single fertilizer reduction policy. A more realistic472

analysis would consider a range of policies to address Nitrogen loading, in-473

cluding best management practices and land retirement. Allowing for more474

policy options would likely lower the overall cost of Nitrogen reduction. Our475
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framework does not preclude multiple policies. One can add multiple pol-476

icy incentives to the profit maximization problem and use SWAT to model477

their physical effects. Here we focus on the overall framework to endogenize478

policy response, and leave the question of multiple policies for a separate479

application. We also do not attempt to estimate the causal determinants480

of tradeoff differences across farms. Likely determinants include on-farm481

practices, topographical characteristics and location in the basin system. A482

better understanding of how these factors affect tradeoff differences would483

be useful for targeting policies in practice.484

While our application focuses on a small agricultural watershed in the485

Pacific Northwest, this framework could be adapted to analyze environ-486

mental tradeoffs for larger and more policy-relevant watersheds, in both487

the U.S. and internationally. It is also possible to expand the analysis to488

include additional environmental objectives, such as biodiversity measures489

or water flow by using the HGA approach. This framework could also be490

adapted to model changing environmental tradeoffs over time, in response491

to a variety of factors, including efficiency and technology change, prospec-492

tive agri-environmental policies, changing development patterns, commodity493

price changes, or projected climate change.494
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